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ABSTRACT 
 

Effective mutagenic treatment techniques for different species are of tremendous interest due to 
the exciting potential of mutation breeding in ornamental plants. The present article addresses the 
mutagenesis treatments of numerous ornamental genera, the benefits and drawbacks of different 
methods, and the potential for enhancing the related protocols. There are several techniques for 
non-targeted mutagenesis, from chemical treatment with alkylating chemicals to dose-dependent 
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exposure to X-rays, gamma rays, neutron or heavy ion beams. All of these have been shown to be 
efficient mutagens in a wide range of different species and are reasonably priced. However, due to 
the high cost and lack of understanding required to efficiently transform and regenerate attractive 
crops, genetic engineering is still generally impracticable for many ornamental breeding operations. 
The most widely used non-targeted mutagen currently in use is gamma radiation. Although it 
appears to have a lower mutagenic efficacy than chemical mutagens, it offers excellent 
consistency. Although chronic irradiation over a longer period of time induces less harmful 
mutations than the routinely employed acute irradiation protocols, changes in the radiation dose 
rate may boost the efficiency. Because of the high particle energy associated with these 
treatments, heavy ion beam irradiation may also offer extremely consistent mutation induction at 
greater efficiencies. Additionally, there are chances to enhance chemical mutagenesis. It is still 
highly beneficial to use mutation breeding, and there are plenty of chances to make the current 
techniques better. 
 

 

Keywords: Ornamental crops; Genetic improvement; chemical mutagenesis; heavy ion beam 
irradiation; alkylating agents. 

 

1. INTRODUCTION 
 
Since ancient times, people have grown 
decorative plants for all significant occasions, 
including the expression of emotions. The value 
of the world's floriculture trade has surpassed 
USD 50 billion and continues to rise. The area 
that may be grown for different flower crops is 
continually growing. More than 90% of the global 
commerce in floriculture products is with wealthy 
nations. Currently, tissue culture is being used to 
propagate over 156 ornamental genera in 
various commercial laboratories across the globe 
(Rout and Jain 2005). The major ornamental 
plant producing country worldwide is the 
Netherlands, claiming 33% of the total global 
market. 
 
Screening the naturally occurring diversity is the 
traditional method used to create new flower 
colors in ornamental plants. Unfortunately, 
traditional breeding techniques have not been 
able to create cultivars that, for example in 
saintpaulia, are resistant to cold, graymold 
illness, or yellow or true red flower colors 
(Kushikawa et al. 2001). Genetic variation is 
necessary for the genetic improvement of 
ornamental plants in order to create new or 
improved kinds. However, the breeding of 
ornamental plants is hampered since the desired 
genetic variety is frequently absent. This is 
because the available germplasm is unable to 
produce the required recombinants, 
necessitating the use of alternative sources of 
variety. Mutation induction techniques offer a 
means of rapidly creating and increasing crop 
species variety, as spontaneous mutations 
happen very seldom. Mutagenic substances like 
radiation and chemicals can cause genetic 

diversity, which can then be used to select 
desired mutants (Datta 1997). The nuclear DNA 
is broken by the mutagen therapy, and new, 
random, heritable mutations are produced during 
the DNA repair procedure. Changes in 
cytoplasmic organelles can also lead to 
chromosomal or genomic mutations, which allow 
plant breeders to choose beneficial mutants for 
traits including disease resistance, early 
flowering types, and flower color and form (Jain 
and Maluszynski 2004). A specific advantage of 
mutation induction is the possibility of obtaining 
unselected genetic variation, improvement of 
vegetatively-propagated plants when one or few 
characters of an outstanding cultivar are to be 
modified. 
 
Alternatively, somaclonal variation is another way 
to induce genetic variability in ornamental plants, 
e.g. Begonia and Saintpaulia (Jain 1997 & Jain 
et al 1998). Point mutations, DNA methylation, 
changed sequence copy number, transposable 
elements, genotype, explant type, culture media, 
age of the donor plants, single gene mutations, 
and chromosomal rearrangements are the 
modifications linked to soma clonal variation. 
Since gene mutations are typically common in 
plants grown from tissue cultures, tissue culture 
systems can be thought of as a means of 
facilitating mutations that will enhance 
agricultural plants. It is important to keep in mind 
that somaclones should not be used for breeding 
programs until their genetic stability has been 
established. 
 
By genetic engineering, flower variants have 
been obtained in several ornamental plants, such 
as Saintpauliaionantha (Kushikawa et al, 2001), 
Gerbera jamesonii (Elomaa et al, 1993), 
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Eustoma grandiflorum and Osteosper 
mumecklonis (Mercuri et. 2001). Florigene 
Company, Australia has sold transgenic 
carnation flowers for six years [9]. Flowers were 
first sold in Australia, followed by Japan and 
USA. They developed two carnation types – the 
spray, which has a branching stem with flowers 
from each branch, and the standard, which is a 
single stem with a single large flower. 
 

2. EMS AND OTHER ALKYLATING 
AGENTS 

 

Since its discovery in 1946, alkylating 
compounds like EMS have been widely used in 
the breeding of ornamental plants. N-methylN0 -
nitro-N-nitro soguanidine, N-ethyl-N-nitro sourea, 
and dimethyl nitrosamine are only a few of the 
several compounds that can be utilized; 
however, EMS is by far the most popular due to 
its mutagenic efficiency ratio of mutations to 
harmful consequences (Gautam et al 1992 Girija 
and Dhanavel 2009), relatively low cost, and high 
availability (Lu et al 2002, Montesano et al 1979 
& Talebi et al 2012). The process by which EMS 
alters DNA is predicated on guanine's alkylation, 
which produces G:C to A:T replacements. This 
results in randomly dispersed point mutations 
across the whole genome (Greene et al. 2003), 
which give rise to single nucleotide 
polymorphisms (SNPs). Furthermore, compared 
to physical mutagens, EMS results in fewer 
deletions (Koornneef et al. 1982). Consequently, 
missense or nonsense mutations can be induced 
by chemical mutagens like EMS, which can lead 
to mutants with altered or occasionally lost 
functions. Typically, a buffer solution containing 
EMS is used to treat seeds. Treatment doses 
and durations vary significantly between taxa and 
even within species, as distinct genotypes may 
react differently to the same intervention. EMS 
can have harmful effects, including sterility, 
mortality, and a decreased capacity to 
regenerate plants from tissues like floral pedicels 
(Roychowdhury and Tah. 2011). If certain weedy 
or invasive species are treated, the desired 
outcome is reduced fertility, which is at least as 
significant as other phenotypic alterations. It is 
always advisable to conduct pilot tests to identify 
the ideal treatment settings, which are often a 
mix of concentration and duration that results in 
50% survival [median lethal dose (LD50)] 
(Berenschot 2008 and Hohmann 2005). Apart 
from seeds, nodal segments and ray florets of 
Chrysanthemum have also been subjected to in 
vitro treatments (Padmadevi & Jawaharlal 2011). 
 

3. ANNUALS AND BIENNIALS 
 
Several annual and biennial ornamental genera 
have been treated with EMS (Table 1). With the 
exception of Begonia, all cases included treating 
the seeds; concentrations have varied from 
0.10% to 1.20%, with a 40% outlier; treatment 
times are typically between 4 and 24 hours. 
(Kashikar and Khalatkar 1981) noted variations 
in bloom color between the white-flowering 
Petunia x hybrida M1 and M2 generations. The 
M1 generation included a variety of violet hues, 
whereas the M2 generation included hues 
ranging from pink to a light blueish                
magenta. Antirrhinum majus M1 mutants with 
aberrant leaf shape and dwarfism were 
discovered. (Heffron et al. 2006) In addition to 
changing flower color and other morphological 
traits, EMS has also been used to create mutants 
with resistance against pathogens, as shown 
who obtained Begonia x hiemalis mutants           
that were resistant to stem rot caused by 
Rhizoctonia. 
 

4. HERBACEOUS PERENNIALS 
 
A small number of non-woody perennial 
decorative species have also been treated with 
EMS; the most common is the economically 
significant genus Chrysanthemum (Table 1) 
(Datta and Chakrabarty. 2005). A variety of 
Chrysanthemum tissues were employed, with 
durations ranging from 1 to 5 hours and 
concentrations ranging from 0.02% to 1.03%. 
Table 1 shows the concentrations and times at 
which different genera were treated, which 
ranged from 0.10% to 1.25% for 10 min to 24 h. 
These experiments used a variety of tissues, 
including seeds, bulbs, flower pedicels, and leaf 
segments. The concentrations and treatment 
times varied from 0.02% to 1.25% and 10 
minutes to 24 hours, respectively. (Hossain 
2006) discovered a salt-tolerant mutant of 
Chrysanthemum morifolium that, when grown in 
high saline conditions, showed no decline in 
bloom size or quantity. Chrysanthemum flower 
colour changed as a result of EMS therapy. For 
instance, when (Latado et al. 2004), a dark pink 
cultivar, was given treatment, mutants with 
golden, yellow, and white flowers were 
discovered. Agave Americana tepal count 
increased from six to eight as a result of EMS 
(Singh et al. 2013). There have also been reports 
of decreased pollen productivity and plant height 
(Contreras and Shearer 2020). 
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Table 1. Ethyl methane sulfontate (EMS) treatment conditions. The genus, mutagen, EMS concentration, treatment duration, median lethal dose 
(LD50) when provided, treated material, and reference are shown for each study (Melsen et al,2021) 

 

Genus Mutagen Treatment concn Treatment duration LD50 Material Reference 

Agave EMS 0.25%to0.50% 4h — Bulbs (Singh et al. 2013) 
Antirrhinum EMS 0.10%to1.00% 8–12h — Seeds (Heffron et al. 2006) 
Begonia EMS Unknown Unknown — Leaves (Chen et al. 2014) 
Bougainvillea EMS 0.80%to1.00% 6h — Cuttings (Anitha et al. 2017) 
Buddleja EMS 1.40% 4h — Seeds (Ghosh and Ganga 2019) 
Chrysanthemum EMS 0.025%to0.050% 5h — Leaf sections (Hossain et al. 2006) 
 EMS 0.02%to0.04% Unknown — Cuttings (Kapadiya et al. 2016) 
 EMS 0.51%to1.03% 1h45min 0.82% Floral pedicels (Latado et al. 2004) 
 EMS 0.10%to0.30% 1h — Ray florets (Padmadev and Jawaharlal 

2011) 
Dianthus EMS 0.10%to0.70% 6h — Seeds (Roychowdhury, and Tah 

2011) 
Gerbera EMS 0.10%to1.00% 10min 0.65% Shoots (Ghani 2014) 
Gladiolus EMS 0.20%to1.20% Unknown — Cormbuds (Gong et al 20010) 
Hydrangea EMS 0.50%to5.00% 3h — Seeds (Greer and Rinehart. 2009) 
Impatiens EMS 0.32%to1.08% 24h — Seeds (Weigle and Butler 1983) 
Jasminum EMS 0.06%to0.62% 1–6h 0.53%,0.55% Cuttings (Ghosh and Ganga 2019) 
 EMS 0.25%to0.4% 1h — Cuttings (Ghosh   2019) 
Ornithogalum EMS 0.20%to1.00% 24h 0.15%,0.52% Seeds (Contreras and Friddle 2015) 
Petunia EMS 0.10%to0.30% 18h — Seeds (Kashikar and Khalatkar 

1981) 
Portulaca EMS 1.20%to40.00% 4h — Seeds (Bennani et al. 2021) 
Ribes EMS 0.20%to1.20% 24–48h — Seeds (Contreras and Friddle 2015) 
Rosa EMS 0.50%to3.00% 2–12h — Apical and axillary 

meristems 
(Senapati and Rout 2008) 

 EMS 0.08%to5.00% 1–24h — Stem cuttings with buds (Smilansky et al. 1986) 
Weigela EMS 0.50% 1h30min — Shoot internodes (Duron 1992) 
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5. WOODY TREES AND SHRUBS 
 
Table 1 shows that EMS has also been applied 
to woody ornamentals. It was employed with 
seeds as well as other tissues including cuttings 
and meristems. Treatments ranged from 1 to 48 
hours and used EMS solutions with 
concentrations between 0.05% and 5%. Several 
features were impacted, much like in the case of 
the biennial, annual, and herbaceous perennials. 
The cultivar Summer Skies, which exhibits 
consistent variegation along the margins of 
leaves, was created by treating Buddle jadavidii 
seeds (Kapadiya et al. 2016). Weigela and Ribes 
sanguineum both had altered leaf morphology, 
which in Ribes' instance produced the cultivar 
Oregon Snowflake (Contreras and Friddle. 2015 
& Duron 1992). After EMS treatments of cuttings, 
(Smilansky et al. 1986) saw a decrease in the 
number of rose petals and the size of the flowers. 
There were additional mutations in flower color 
with reduced cyanidin and pelargonidin 
concentrations. Bougainvillea spectabilis showed 
variations in leaf form, variegation, dwarfism, and 
thorn lessness (Anitha et al. 2017). (Ghosh and 
Ganga 2019) dwarfism in Jasminum grandiflorum 
has also been noted. It is evident that EMS can 
cause mutations in a wide variety of species, 
hence altering a wide range of properties. Using 
EMS is a desirable option because it doesn't 
require pricey technical equipment and is a 
reasonably simple process, especially for 
smaller-scale breeding initiatives. The inability of 
EMS or other chemical mutagens to deeply enter 
plant tissues and seeds with thick coatings is a 
drawback that could result in uneven treatment 
outcomes (Harten1998). EMS has the benefit of 
having a relatively high mutagenesis efficiency, 
which reduces the proportion of undesired 
mutations to all mutations (Kaul and Bhan 1977). 
On either side of the optimal, however, the 
efficiency usually falls and varies with dose. This 
highlights even more how crucial it is to ascertain 
the correct dosage prior to applying a large-scale 
plant treatment. 
 

6. X-RAYS AND GAMMA RAYS 
 
Following the discovery of the mutagenic effects 
of ionizing radiation by (Muller 1927) and (Stadler 
1928), numerous mutant types have been 
produced utilizing X-rays and gamma rays. 
Particularly popular has been gamma radiation, 
which was used to develop around half of all the 
mutant kinds listed in the FAO/IAEA Mutant 
Variety Database. Only 17% of the registered 
types have been exposed to X-rays, and little 

more than 10% have been subjected to chemical 
mutagenesis (International Atomic Energy 
Agency, 2021). The foundation of both gamma 
and X-ray mutagenesis is the direct and indirect 
interaction with DNA with extremely intense 
electromagnetic radiation. These interactions 
typically break the DNA, resulting in deletions 
and other chromosomal abnormalities, the 
majority of which are loss-of-function mutants 
(Kodym and Afza. 2003), (Maple and Møller 
2007) & (Oladosu et al. 2016). 
 
Plant tissue or seeds are normally exposed to 
gamma radiation in gamma fields for long-term 
exposure and gamma chambers or rooms for 
acute exposure (Bala and Singh. 2013) & (Datta 
et al. 2014). However, chronic irradiation is not 
often employed. Cobalt-60 is the most often used 
gamma source, however there are other efficient 
ones as well, such cesium-137 (Puchooa et al. 
2005). The procedure for X-ray irradiation is 
similar and uses an X-ray source instead of a 
gamma source. Dosage is typically measured in 
kilorads (krad), grays (Gy), or sometimes 
roentgens (R). Converting among units is simple: 
10 krad = 1 Gy and 114 R = 1 Gy. A wide range 
of absorbed radiation doses are used depending 
on the radiosensitivity of the treated material. 
Physical mutagens have the same deleterious 
effects as chemical mutagens. Therefore, it is 
recommended that the optimal dose, usually 
close to the LD50, should be determined for a 
specific subject before starting with irradiation on 
a large scale (Gladstones and Francis. 1965) & 
(Webb et al. 2005). 
 

7. ANNUALS AND BIENNIALS 
 
Petunia is the most popular annual and biennial 
ornamental genera whose mutagenesis has 
been studied using gamma and X-rays. (Table 
2). For gamma irradiation, the total absorbed 
doses have ranged from 0.5 to 320 krad. A dose 
of 320 krad is exceptionally high, however; the 
median maximum dose was 12.5 krad. For X-
rays, the doses have ranged from 0.22 to 20 
krad. Seeds are the most commonly irradiated 
tissues, but others such as leaf discs and 
cuttings have been used. Many traits were 
affected. [58] identified a Petunia mutant with a 
higher density of trichomes and a distinct leaf 
shape. (Venkatachalam and Jayabalan1997) 
found zinnias with novel flower colors such as 
yellow, magenta, and red with white spots in 
mutants of the cultivar Crimson Red. A Zinnia 
mutant showing a larger number of whorls in its 
flowers was also found (Doorenbos and Karper 
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1975) identified Begonia hiemalis mutants 
displaying dwarfism, petaloid stamens, and 
varying leaf colors. Fertility, characterized as the 
number of seed capsules produced after manual 
pollination, was reduced in Petunia hybrida 
(Berenschot et al. 2008).  
 

8. HERBACEOUS PERENNIALS 
 
Many herbaceous perennials have been treated 
with gamma and X-rays; Chrysanthemum is by 
far the most often treated genus (Table 2). The 
doses used in the X-ray treatments ranged from 
0.44 to 13 krad, with one dose at 50 krad being 
extremely high. The dose range for gamma 
irradiation was 0.15 to 15 krad, with two 
exceptions at 40 krad. In these investigations, a 
wide variety of tissues were used. The tissues 
varied from cuttings and entire plants to 
individual cells and ray florets for 
Chrysanthemum alone. Bulb cuttings, corms, and 
leaf cuttings were used for other genera. 
Remarkably, none of the research under 
consideration used seeds. Numerous 
morphological characteristics of biennials and 
annuals were impacted. (Preil et al. 1983) 
selected two Chrysanthemum mutants that were 
tolerant to low temperatures. (Lee et al. 2010) 
irradiated cuttings of the Chrysanthemum cultivar 
Beakma and found a mutant that did not form a 
hollow stem when grown in high summer 
temperatures, leading to plants with stronger 
stems that are easier to handle. A Gerbera 
jamesonii mutant that was tolerant to powdery 
mildew was found by (Ghani and Sharma 2019). 
In Dianthus caryophyllus, X-ray irradiation 
restored male fertility (Sagawa and Mehlquist 
1959); in Ornithogalum virens, however, [65] was 
able to produce partial sterility. observed that 
applying very moderate doses of gamma 
radiation to the callus of Rudbeckia sub 
tomentosa produced a good number of 
mutations, including decreased height and 
improved flower morphology, as well as high 
survival. Most of the other genera exhibited a 
wide range of variations in flower form and color, 
and as demonstrated by (Shukla et al. 2018), 
characteristics like vase life can also be 
enhanced. 
 

9. WOODY TREES AND SHRUBS  
 
Gamma or X-rays have been used to treat a wide 
variety of woody species (Table 2). (Sparrow et 
al. 19968) calculated the gamma radiation lethal 
doses (LD50) for 28 species of woody plants and 
estimated the LD50 for an additional 190 species 

by using the inter phase chromosomal volumes 
of those plants. The authors acknowledge that 
there are significant differences in the results due 
to timing and other methodological issues. 
Although they did not list any obvious 
characteristics brought on by mutations, the 
LD50 values offer a place to start for figuring out 
what dose is best for each of these species. The 
aforementioned studies used doses ranging from 
0.1 to 40 krad with outliers at 140 and 225 krad 
for gamma rays and 2.5 to 6 krad for X-rays. 
Seeds and cuttings were often the choice of 
tissue to treat, but whole plants and explants 
were also treated. Different traits were affected 
by the mutations. A jasmine-like fragrance was 
found in a Vitex agnus-castus mutant by (Ari et 
al. 2015), who showed that complicated traits like 
fragrance can also be improved by inducing 
mutations. Dwarfism was found by (Kukimura et 
al. 1967) in Cryptomeria and in Jasminum 
(Ghosh et al. 2019). Shorter internodes resulting 
in lower plant height were also observed in 
Populus and Rosa (Baig et al. 2012). Other 
variations in Rosa were restoration of fertility and 
changes in color (orange, pink, etc. compared 
with red in the original cultivar), possibly because 
of changes in cyanidin and pelargonidin content 
(Smilansky et al. 1968). 
 
While many plant species have found great 
success with gamma and X-ray irradiation as 
mutagens, these techniques need more 
expensive apparatus, such as gamma sources 
and X-ray machines. They provide for good 
tissue and seed penetration, enabling the 
treatment of material with a higher uniformity. 
Additionally, they offer methods for caring for 
delicate tissue that could be harmed by soaking 
things in chemicals, including pollen grains 
(Oladosu et al. 2016) & (Predieri and Virgilio 
2007). However, it appears that their 
mutagenesis efficiency is not very high (Gautam 
et al. 1992) & (Wani 2009). 
 

10. NEUTRONS AND HEAVY IONS 
 
Gamma or X-ray irradiation is being replaced 
with neutron and heavy ion radiation. Recent 
years have seen the use of heavy ion irradiation, 
primarily with carbon ions, to cause mutations in 
a number of plant species. (Arase et al. 2011, 
Kondo et al. 2009 & Matsumura et al. 2010). 
Neutron irradiation has also been used as a 
mutagen, but it has had very limited use in 
ornamentals (Bolon et al. 201, Broertjes 1976, 
Datta 2012). The mechanism of gamma and X-
ray irradiation-induced mutations is somewhat 
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Table 2. Gamma and X-ray treatment conditions, genus, mutagen, treatment dose, median lethal dose (LD50), treated material, and reference are 
shown for each study 

 

Genus Mutagen Dose(krad)z LD50(krad) Material Reference 

Acer Gammarays 
Gammarays 

0.1–5 
50–225 

— 
— 

Cuttings  
Seeds 

(Smithand Noyszewski 2018) 

Agave Gammarays 1–40 — Bulbs (Navabi 2016) 
Begonia Berberis 
Bougainvillea 

X-rays 
Gammarays Gammarays 
Gammarays Gammarays 

1.5–2.5 
0.1–5 
50–225 
0.5–1 
0.5–2 

— 
— 
— 
— 
— 

Leaves 
Cuttings 
Seeds 
Cuttings 
Cuttings 

(Doorenbos and Karper 1975)  
(Smith and Noyszewski2018)  
(Smithand Noyszewski 2018)  
(Anitha et al. 2017)  
(Swaroop et al. 2015) 

Chrysanthemum Gammarays X-rays 
Gammarays Gammarays 

1–4 
0.44–1.75 
0.5–1 
3–10 

— 
— 
— 
— 

Cuttings 
Cuttings 
Ray florets 
Plantlets 

(Dowrick and Bayoumi 1966)  
(Dowrick and Bayoumi 1966)  
(Singh et al. 2013)  
(Kapadiya et al. 2016) 

Cryptomeria GammaraysX-rays 1–5 
2.5 

— 
— 

Cuttings 
Callus 

(Lee et al. 2010) 
(Preil et al. 1983) 

Dahlia Gammarays 1–3 — Cuttings (Sundar et al. 2017) 
Dianthus GammaraysX-rays 

X-raysGammarays 
5.26–10.5 
2–50 
4–13 
3–10 

— 
— 
— 
— 

Cuttings 
Nodes 
Leaf segments 
Leaf segments 

(Buiatti and Ragazzini 1965)  
(Cassells et al. 1983)  
(Okamura et al. 2003)  
(Okamura et al. 2003) 

Gerbera X-rays Gammarays 
Gammarays 

2.2–4.4 
2–8 
0.15–3 

— 
— 
0.65 

Plants 
Petal explantsShoots 

(Sagawa and Mehlquist 1959)  
(Sagawa and Mehlquist 1959)  
(Ghani et al. 2014) 

 Gammarays 0.15–1 0.6 Shoots (Ghani et al. 2014) 
Gladiolus 
 

Gammarays Gammarays 
Gammarays 

1.5–5.5 
1.5–6 
1.75–10.5 

— 
— 
— 

Corms 
Corms 
Corms 

(Sathyanarayana et al. 2019) 
(Shukla et al. 2018)  
(Tirkey and Singh 2019) 

Iris X-rays 0.5–1.1 — Bulbs (Hekstra And Broertjes. 1968) 
Jasminum Gammarays 1–2.5 — Cuttings (Ghosh et al. 2019) 
Lonicera Gammarays 1–6 2.1,3.5 Microcuttings (Cambecedes et al. 1992) 
Ornithogalum Gammarays 20–40 — Seeds (Biswas and Biswas 2006) 
Pelargonium Gammarays 1.5 — Leaves (Grunewalt 1983) 
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Genus Mutagen Dose(krad)z LD50(krad) Material Reference 

Petunia Gammarays 2–10 10 Seeds (Berenschot et al. 2008) 
Plectranthus Gammarays 1.5–6 3.762–6.52 Cuttings (Aisyah et al. 2015) 
Populus Gammarays 1–30 — Plantlets (Nishiguchi et al. 2012) 
Rosa Gammarays Gammarays 

Gammarays 
1–6 
1–12 
0.5–8 

— 
3.3–5.4 
4 

Shoot tips 
Shoot tips 
Stem cuttings with bud 

(Aamir et al. 2016)  
(Baig et al. 2012)  
(Bala and Singh 2013) 

Rudbeckia X-rays 2.5–6 — Micro shoots (Walther, F. A. Sauer 1986) 
Saintpaulia Gammarays 1–10 5.6 Leaf cuttings (Wongpiyasatid et al. 2007) 
 X-rays 0.5–10 5.69 Leaf explants (Zhou et al. 2007) 
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similar to that of neutron and ion irradiation. DNA 
is broken into double strands when ions and 
neutrons clash with it, leading to deletions 
(Shikazono et al. 2005). Therefore, the majority 
of mutants produced by neutron or ion radiation 
are loss-of-function mutants. Typically, a 
cyclotron is utilized to accelerate the ions 
required to irradiate plant tissues, and then the 
ions are transmitted downrange to the sample 
(Magori et al. 2010). Selecting ions of a certain 
element allows one to modify the energy of the 
particles themselves in addition to the total dose. 
Even though carbon is frequently utilized, it is 
also feasible to irradiate employing heavier ions 
like iron or argon. Another way of altering the 
particle energy of the ions is by forcing the beam 
to pass through aluminum disks of a certain 
thickness, thus causing the particles to lose 
kinetic energy (Ryuto et 2006). Mega-electron 
volts (MeV) or mega-electron volts per nucleon 
(MeV/u) are the two units used to quantify 
particle energy. The linear energy transfer (LET), 
expressed in keV/mm, characterizes the final 
energy that the ions deposit in the plant tissue. At 
LETs ranging from 22.5 to 310 keV/mm, doses 
usually range from 0.01 to 14 krad. Like with all 
mutagens, it's critical to figure out the                     
ideal dosage prior to widespread radiation 
exposure. 
 

11. ANNUALS AND BIENNIALS 
 
Ion beams have only been applied to a small 
number of annual or biannual genera, while 
neutron beams have never been employed 
(Table 3). These investigations have employed 
heavy ion doses ranging from 0.1 to 8 krad at 
LETs ranging from 22.5 to 76 keV/mm. Different 
tissues are exposed to ion beam radiation. 
Although apical meristems and shoot cultures 
have been employed, cuttings with nodes and 
leaves also make good targets for radiation. 
Color of flowers is frequently impacted (Ogawa et 
al. 2014) discovered that, in contrast to the 
natural purple blooms, Limonium mutants 
displayed brighter, deeper, or more reddish-
purple hues. Similar Torenia mutants, as 
reported by (Miyazaki et al. 2006), displayed pale 
or dark pink flowers as opposed to the blue 
blooms of the wild type. They also revealed that 
the pink color likely resulted from the inhibition of 
dihydromyricetin biosynthesis, thus preventing 
build-up of the anthocyanidins delphinidin, 
petunidin, and malvidin. Other traits such as 
variegation in Petunia and sterility in Verbena 
were observed (Miyazaki et al. 2002 and Kanaya 
et al. 2008). 

12. HERBACEOUS PERENNIALS 
 
Ion beam and neutron irradiation have been 
applied to a far greater number of herbaceous 
perennial species, with Chrysanthemum once 
again being the most common (Table 3). The 
treatment parameters comprised of ion doses 
between 0.01 and 10 krad at LETs between 22.5 
and 310 keV/mm. Neutrons were administered to 
Achimenes alone, at doses ranging from 0.75 to 
2 krad. Target tissues included ray florets, leaf 
segments, callus, petioles, and buds. One case 
also involved the usage of seeds. The majority of 
mutants exhibited abnormalities in basic 
morphological features as plant size (dwarfism), 
leaf form, flower color, flower size, and flower 
shape.  discovered sterile mutations of Cyclamen 
(Sugiyama et al. 2008). Additionally, a mutant 
Chrysanthemum that flowered early and at low 
temperatures was discovered. (Sakamoto et al. 
2016). 
 

13. WOODY TREES AND SHRUBS  
 
Only a small number of woody taxa underwent 
ion beam or neutron irradiation (Table 3). Doses 
of ion beams between 0.5 and 14 krad were 
employed. With the exception of two occurrences 
where the LET was 23 keV/mm, LETs were 
primarily not recorded. Doses of neutron 
irradiation varied between 2 and 14 krad. 
Although scions, stem cuttings, and buds have 
all been employed as irradiation targets, seeds 
were most frequently used. Prunus and Rosa 
flower color as well as dwarfism in Spiraea and 
Hydrangea plants were among the impacted 
features. (Hayashi et al. 2019) discovered that in 
2007, a Prunus mutant that flowered twice in a 
single year did not require a cold period to flower. 
If the mutant was exposed to harsh winter 
temperatures, it produced three times as many 
flowers as the original variety. In 2010, this 
mutant—dubbed "Nishina Otome"—was made 
available for purchase. (Hekstra and Broertjes 
1968) discovered a number of Acer mutants that 
failed to blossom and generate any seeds. A 
Berberis mutant that did flower was also 
discovered, but the seeds it produced were not 
viable. Although these mutations are still being 
assessed, they may offer ways to lessen the 
invasiveness of non-native Berberis and Acer 
species in North America. 
 

14. STABILITY OF RESULTING MUTANTS 
 
Chimeras are frequently the outcome, regardless 
of the mutagen of choice or the organ(s) treated. 
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Table 3. Neutron and heavy ion treatment conditions. The genus, mutagen, treatment conditions, treated material, and reference are shown for 
each study. For the treatment conditions, the dose is shown in kilorads (krad) 

 

Genus Mutagen Dose LD50 Material Reference 

Acer Neutrons 2–14krad — Seeds (Hekstra et al. 1968) 
Achimenes Neutrons 0.75–2krad — Leaves (Broertjes 1976)  
Berberis Neutrons 2–14krad — Seeds (Hekstra and Broertjes. 1968) 
Chrysanthemum Ion beam Ion 

beam Ion beam 
Ion beam 
Ion beam 

1krad,unknown,23keV/mm 
0.1–0.8krad,220MeV,122keV/mm 
0.1–0.5krad,446MeV/u,93keV/mm 
0.3–
0.6krad,unknown,22.6keV/mm 
0.1–2krad,135MeV/u,23keV/mm 

— 
— 
— 
— 
— 

Scions 
Ray florets and leaf explants 
Leaf segments ray florets  
Cuttings 
Stem segments 

(Hisamura et al. 2016) 
(Matsumura et al. 2010) 
(Sparrow et al. 1968) 
(Sakamoto et al. 2016) 
 
(Suzuki et al. 2005) 

 
 
Cyclamen 

Ion beam Ion 
beam Ion beam 
Ion beam 
Ion beam 

0.2–
0.5krad,unknown,23/62/280keV/
mm0.01–0.3 krad, unknown, 
23/310 keV/mm0.3–0.6 krad, 135 
MeV/u, 22.5 keV/mm 
0–5 krad, 220/320 MeV, unknown 

— 
— 
— 
— 
— 
 

Cuttings Leaf blades 
Stemsegmnt 
Petioles 
Petioles 

(Tanokashira et al. 2014) 
(Tanokashira et al. 2014  
(Wakita et al. 2008) 
(Ishizaka et al. 2012) 
(Kondo et al. 2009) 

 
Dianthus 

Ion beam 
Ion beam 

0.5–3 krad, 220 MeV, unknown 
0.7–2 krad, 320 MeV, 76 keV/mm 

— 
— 
 

Leaf sent 
Petals  

(Kondo et al. 2009) 
(Kondo et al. 2009) 

Saintpaulia Ion beam 0.5–8 krad, 960 MeV, unknown — Leaf (Zhou et al. 2006) 
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Frequently unstable, chimeras revert to their wild 
form. Leaf variegation is a typical example, 
wherein a mutation affects all of a histo-genic 
layer (periclinal), a section of many histo-genic 
layers (sectorial), or a fraction of a histo-genic 
layer (mericlinal). There has been a lot of 
discussion on these chimeras and their 
application in horticulture elsewhere 
(Marcotrigiano 1997). In the case of asexually 
propagated crops, the breeder must know how to 
stabilize the trait of interest so that it can stay 
true to type during serial replication; alternatively, 
the mutations must be expressed through the LII 
(germ layer) histogenic layer in order for them to 
be helpful. Subsequent phytomeres frequently 
exhibit variable variegation and permit the 
proliferation of stems above which the 
characteristic seems stabilized. In a Sarcococca 
confuse example, (Hoskins and Contreras. 2019) 
described how an unstable “blotchy” variegation 
was allowed to grow until it stabilized into a 
uniform chartreuse leaf type. This leaf type 
remained stable after clonal propagation and 
also produced true-to-type seed, though the 
latter is more likely due to apomixis than to a LII 
histogenic layer containing the trait. The many 
cultivars that regularly revert in the ornamental 
trade provide evidence that, even in cases where 
the characteristic seems stable, there is a long-
term potential for reversion. Seed propagation, 
independent of apomixis, represents a more 
reliable method of stabilizing the trait but does 
require the mutation present in the LII histogenic 
layer. 
 

15. CONCLUSIONS 
 
When selecting the mutagen and treatment 
circumstances, a number of parameters need to 
be taken into account. Chemical mutagens are 
thought to have a poorer capacity to profoundly 
enter plant tissue or thick seeds, despite the fact 
that they are comparatively cheap and need less 
technical equipment (Van Harten 1998). Physical 
mutagens, on the other hand, offer reliable 
therapy but necessitate the presence of radiation 
sources, such as nuclear reactors, gamma or X-
ray equipment, or particle accelerators. Physical 
mutagens also have the benefit of not producing 
hazardous or cancer-causing waste, making it 
simple to handle plant tissue or seeds after 
treatment, and treating fragile materials like 
pollen grains (Oladosu et al. 2016 & Predieri et 
al. 2007). The fact that EMS and other chemicals 
primarily result in single base changes, which 
may produce a number of phenotypically unique 
change-of-function mutants for a certain feature, 

is another reason why they might be preferable 
in some circumstances (Shikazono et al. 2005 & 
Greene et al. 2003). Physical mutagens, on the 
other hand, typically result in deletions that 
produce mutants with lost functions (Oladosu et 
al. 2016). When beginning mutant breeding for a 
new species or cultivar, already documented 
experiences with a multitude of ornamental 
genera are useful. These experiences can inform 
the initial dosages; the treatment parameters can 
then be adjusted. Apart from the above 
mentioned benefits and drawbacks, distinct 
mutagens exhibit varying degrees of 
mutagenicity. Despite being the most widely 
used mutagen to date, gamma radiation has not 
been as effective as extracellular magnesium 
sulfide (EMS), according to several research 
(Gautam et al. 1992). Nonetheless, there are 
ways to increase efficiency. The efficiency of 
gamma and maybe X-ray irradiation can be 
improved by irradiating plant tissue or seeds over 
extended periods of time at lower dosage rates. 
Other practical possibilities include heavy ion and 
neutron irradiation, which offer higher efficiency 
and the same high penetration as conventional 
physical mutagens. Even though genetic 
engineering is becoming more widely available, 
the expenditures associated with development 
and regulation make it frequently too costly for 
application in ornamental breeding. Moreover, 
there's frequently a dearth of understanding 
regarding the processes involved in changing 
and regenerating ornamentals.For the 
foreseeable future, random mutagenesis will 
therefore continue to be a significant source of 
genetic diversity with plenty of room for 
advancement in current techniques. 
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